		5 Basic Indices Rules/Laws	www.mymathsc	loud.com © MyMathsCloud
Multiplication	Division	Raising Numbers to Powers	Negative Powers	Rational Powers
Rule 1: Add the powers when multiplying $x^{a} \times x^{b} = x^{a+b}$ The bases must be the same to use this rule and notice how they do not change (base x stays x) Why is this rule true? $x^{2} \times x^{3} = (x \times x) \times (x \times x \times x) = x^{5}$	Rule 1: Subtract the powers when dividing $x^a \div x^b$ or $\frac{x^a}{x^b} = x^{a-b}$ The bases must be the same to use this rule and notice how they do not change (base x stays x) Why is this rule true?	Rule 1: Raising to a power of zero: Anything to the power of 0 is always 1 (ANYTHING non zero) ⁰ = 1 $2^0 = 1$ $x^0 = 1$	Rule 1 : $x^{-n} = \frac{1}{x^n}$ and $(ab)^{-n} = \frac{1}{(ab)^n}$ The easiest way to think of this rule is that if we move terms between the numerator and denominator, the POWER of what is being moved changes(swaps/reverses) its sign (a positive becomes a negative and vice versa).	(Fractional Powers) $a^{\frac{n}{m}} = (\sqrt[m]{a})^{n}$ "ROOT AND THEN POWER $\frac{1}{2}$ m \overline{a}
We have five x's in total. The power simply tells us how many of the base we have in total. Hence, we add the powers Simplify $5x^4 \times x^3$ $5x^4 \times 1x^3 = (5 \times 1)x^{4+3} = 5x^7$ Rule 2: Multiply the powers with a bracket $(x^{a})^b = x^{ab}$ notice how the base does not change (base x stays x)	$\frac{x^{7}}{x^{4}} = \frac{x \times x \times x \times x \times x \times x \times x}{x \times x \times x \times x}$ $= \frac{x \times x \times x \times x \times x \times x}{x \times x \times x \times x}$ $= x^{3}$ Hence, we subtract the powers Simplify $16x^{2}y^{5} \div 4x^{6}y^{3}$ $16x^{2}y^{5} \div 4x^{6}y^{3} = (16 \div 4)x^{2-6}y^{5-3} = 4x^{-4}y^{2}$	$(2x)^{0} = 1$ $\left(\frac{2}{3}\right)^{0} = 1$ Rule 2: Raising a fraction to a power: $\left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}}$ Apply the power to both the numerator and denominator Simplify $\left(\frac{2}{3}\right)^{3}$	Simplify 2^{-3} $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ Moving the power -3 from the numerator to the denominator reverses the sign (in other words - became +). Note: 2^{-3} means $\frac{2^{-3}}{1}$ hence the power was in the numerator originally and negative. We then moved it to the denominator and it became positive. There is a 1 in the numerator since the 2^{-3} moved, leaving only a 1.	Note: $x^{\frac{1}{m}} = \sqrt[m]{x}$ A fractional power works like a flower The bottom is the root And the top is the power Start: $8^{\frac{2}{3}}$ $2^{2}=4$ $8^{\frac{2}{3}}$ Power $\sqrt[3]{8}=2$
Why is this rule true? $(x^{2})^{3}$ $= x^{2} \times x^{2} \times x^{2}$ Since we have x^{2} three times Now using rule 1 to add the powers gives x^{6} Hence, we multiply the powers when we have a bracket Simplify $(4x^{2}y^{3})^{4}$ $(4x^{2}y^{3})^{4} = (4)^{4}(x^{2})^{4}(y^{3})^{4} = 256x^{2}y^{12}$ Rule 3: Rule 2 can be extended when more than 1 term inside the bracket	Common MistakesMistake 1: The base DOES NOT change $2^9 + 2^6$ doesn't equal 1^3 Instead, $2^9 + 2^6 = 2^3$ Mistake 2: Don't ignore the power when it isn't written (it means power 1) $6x^2 + 3x$ doesn't equal $2x^2$ Instead, $6x^2 + 3x^1 = 2x$ Mistake 3: Don't let the fraction division notation	$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}$ Note: If more than 1 "element" inside the bracket we then use multiplication rule 3 $\left(\frac{2x}{3y^2}\right)^3 = \frac{(2x)^3}{(3y^2)^3} = \frac{(2)^3(x)^3}{(3)^3(y^2)^3} = \frac{2^3x^3}{(3)^3y^6} = \frac{8x^3}{27y^6}\right)$	Get rid of the negative powers in $\frac{2x^2y^{-3}}{3z^{-4}}$ $\frac{2x^2y^{-3}}{3z^{-4}}$ The constants 2 and 3 stay where they are since they are and so can the x^2 term since it doesn't have a negative power. Remember for terms with negative powers that anything that moves between numerator and denominator changes the sign of its power $\frac{2x^2z^4}{3y^3}$	Simplify $27\frac{2}{3}$ $27\frac{2}{3}$ Root $(\sqrt[3]{27})^2$ $(3)^2$
$(cx^{a}y^{b})^{d} = (c)^{d}(x^{a})^{d}(y^{b})^{d}$ Now applying rule 2 for each gives us $c^{d}x^{ad}y^{bd}$ $\underline{Common Mistakes}$ $\underline{Mistake 1:} The base DOES NOT change$ $2^{3} \times 2^{6} \text{ doesn't equal } 4^{9}$	confuse you $\frac{24x^6y^2}{32x^4y^3}$ Deal with each part separately $\frac{24x^6y^2}{32x^4y^3}$ $\frac{3x^2}{3x^2}$	Rule 3: Raising negative numbers to a power: (positive number) ^{even power} = + (positive number) ^{odd power} = + but (negative number) ^{even power} = +	Rule 2: Raising fractions to negative powers $\binom{x}{y}^{n} = \binom{y}{x}^{n} = \frac{y^{n}}{x^{n}}.$ We flip the fraction and change the sign Why is this rule true? <u>Way 1:</u> Flip the fraction and the power becomes positive $\left(\frac{y}{x}\right)^{n}$	Power = 3^2 = 9
Instead, $2^3 \times 2^6 = 2^9$ <u>Mistake 2:</u> Don't ignore the power when it isn't written (it means power 1) $2x^2 \times 3x$ doesn't equal $6x^2$. Instead, $2x^2 \times 3x^1 = 6x^3$ <u>Mistake 3:</u> The power affects the first number term also $(2x^2y^4)^3$ doesn't equal $2x^6y^{12}$ Instead, $(2x^2y^4)^3 = 8x^6y^{12}$ <u>Mistake 4:</u> We raise the first number to the power, we don't multiply it	$= \frac{3x}{4y}$ How did we get this? Think of it as simplifying $\frac{24}{32}$ which is $\frac{3}{4}$ and there are 6 x's and 2 y 's in the numerator and 4 x 's and 3 y 's in the denominator $\frac{3xxxxxyy}{4xxxxyyyy}$ We cross off the corresponding matching pairs $\frac{3xxxxxyy}{4xxxyyy}$	$\frac{(\text{negative number})^{\text{odd power}} = -}{\frac{\text{Example 1:}}{\text{Simplify } (-2)^4 \text{ versus } -(2)^4}$ $\frac{(-2)^4 = -2 \times -2 \times -2 \times -2 = 16}{-2^4 = -(2 \times 2 \times 2 \times 2) = -16}$ They are not the same thing! $(-2)^4 = 16 \text{ and } -(2)^4 = -16$ $\frac{\text{Example 2:}}{-2^4 = 16}$	Now raise both to the power <i>n</i> giving $\frac{y^n}{y^n}$ <u>Way 2</u> ; Apply the power to both the numerator and denominator first to get $\frac{x^{-n}}{y^{-n}}$. Now deal with the negative powers $\Rightarrow \frac{y^n}{x^n}$ <u>Way 3</u> : Get rid of the negative power first by writing over 1 $\frac{1}{\left(\frac{y}{y}\right)^n} = \left(\frac{y}{x}\right)^n$ or $\left(\frac{1}{\frac{y}{y}}\right)^n = \left(\frac{y}{x}\right)^n$ Now raise both to the power <i>n</i> giving $\frac{y^n}{y^n}$ Notice how writing a fraction over 1 just flips it (i.e. way 1)	Simplify $\left(\frac{64x^6z^{12}}{27y^3}\right)^{\frac{1}{3}}$ $\left(\frac{64x^6z^{12}}{27y^3}\right)^{\frac{1}{3}} = \frac{64x^6z^{12}}{(27y^3)^{\frac{1}{3}}}$ $= \frac{64^{\frac{1}{3}}(x^6)^{\frac{1}{3}}(z^{12})^{\frac{1}{3}}}{2^{\frac{1}{73}}(y^3)^{\frac{1}{3}}}$
$(5x)^3$ does not equal $15x^3$ Instead, $(5x)^3 = 5^3x^3 = 125x^3$ <u>VERY COMMON Mistakes</u> <u>Mistake 5:</u> Don't mistake rule 3 when there_ is a sign (+ or -) in	We have 2 x's left in the numerator and 1 y left in the denominator $= \frac{3x^2}{4y}$ OR:	Simplify $(-2)^3$ versus $-(2)^3$ $(-2)^3 = -2 \times -2 \times -2 = -8$ $-2^3 = -(2 \times 2 \times 2) = -8$ Here they are the same thing! $(-2)^3 = -8$ and $-(2)^3 = -8$	Simplify $\left(\frac{64}{125}\right)^{-\frac{2}{3}}$ $\left(\frac{64}{125}\right)^{-\frac{2}{3}}$. Flip the fraction $\left(\frac{125}{64}\right)^{\frac{2}{3}}$ $\left(\frac{125}{64}\right)^{\frac{2}{3}} = \frac{125^{\frac{2}{3}}}{64^{\frac{2}{3}}} = \frac{25}{16}$	$=\frac{64^{\frac{1}{3}}x^2z^4}{27^{\frac{1}{3}}y}=\frac{4x^2z^4}{3y}$
the middle. $(2x)^2$ is not the same as $(2 + x)^2$ $(2x)^2 = 4x^2$ whereas $(2 + x)^2 = 4 + 4x + x^2$ The latter is expanding brackets <u>Mistake 6:</u> Don't confuse addition/subtraction with multiplication. We can only add/subtract "like" terms (when we add/subtract the algebra part doesn't change) • $2x + 3x$ is not the same as $2x \times 3x$ 2x + 3x = 5x by collecting like terms $2x \times 3x = 6x^2$ using indices rule 1 • $2x^2 + 3x^2$ is not the same as $2x^2 \times 3x^2$ $2x^2 + 3x^2 = 5x^2$ but $2x^2 \times 3x^2$ $2x^2 + 3x^2 = 5x^2$ but $2x^2 \times 3x^2$	Just think when we move the powers between numerator and denominators we <u>subtract</u> them $\frac{24x^{6}y^{2}}{32x^{4}y^{3}} = \frac{24x^{6-4}}{32y^{3-2}} = \frac{3x^{2}}{4y}$	Simplify 2(3) ² 2(3) ² does not equal 6^2 We must do the power 3^2 first BIDMAS/BODMAS) 2(3) ² = 2(9) = 18	Example 3: (1) ⁻¹ = $\frac{4}{1}$ = 4 Example 3: (1) ⁻¹ = $\frac{4}{1}$ = 4 Example 4: (1) ⁻¹ = $\frac{4}{1}$ = 4 Example 5: (1) ⁻¹ = $\frac{3}{1}$ Example 2: 2 ⁻³ = $\frac{2^{-3}}{1}$ = $\frac{1}{2^3}$ = $\frac{1}{6}$ Example 5: Example 5: (2) ⁻³ = (5) ⁻	Common Mistakes $\sqrt{x} = x^{\frac{1}{2}}$ We drop the 2 for square root. When nothing is written to the left of the root it means square root © MyMathsCloud
• $2x^2 + 3x^3$ cannot be done/simplified but $2x^2 \times 3x^3 = 6x^5$			$\frac{2x^2z^{-4}}{\left(\frac{4x^3}{6b^{-2}}\right)^{-2}} = \left(\frac{6b^{-2}}{4a^3}\right)^2 = \frac{36b^{-4}}{16a^6} = \frac{9}{4a^6b^4}$	