Multiplication
 hen multiplying $x^{a} \times x^{b}=x^{a+b}$

The bases must be the same to use this rule and notice how they do not change (base x stays x) Why is this rule true?
Wave five $x^{2} s \times x^{3}=(x \times x) \times(x \times x \times x)=x^{5}$

> Simplify $5 x^{4} \times x^{3}$
> $\quad 5 x^{4} \times 1 x^{3}=(5 \times 1) x^{4+3}=5 x^{7}$

Rule 2: Multiply the powers with a bracket
$\left(x^{a}\right)^{b}=x^{a}$
notice how the base does not change
(base x stays x)
Why is this rule true?

$x^{2} \times x^{2} \times x^{2}$)

$=x^{2} \times x^{2} \times x^{2}$ since we
Now using rule 1 to add the powers gives x^{6}

Simplify $\left(4 x^{2} y^{3}\right)^{4}$
$\left(4 x^{2} y^{3}\right)^{4}=(4)^{4}\left(x^{2}\right)^{4}\left(y^{3}\right)^{4}=256 x^{2} y^{12}$
Rule 3: Rule 2 can be extended when more than 1 term inside the
bracket
$\left(c x^{a} y^{b}\right)^{d}=(c)^{d}\left(x^{a}\right)^{d}\left(y^{b}\right)^{d}$
Now applying rule 2 for each gives us $c^{d} x^{a d}$

Common Mistakes

Mistake 1: The base DOES NOT Change
$2^{3} \times 2^{6}$ doessn't equal 4^{9}
Instead, $2^{3} \times 2^{6}=2^{9}$
Mistake 2: Don't ignore the power when it isn't written
(it means power 1)
$2 x^{2} \times 3 x$ doesn't equal $6 x$
Instead, $2 x^{2} \times 3 x^{1}=6 x^{3}$
Mistake 3: $\left(2 x^{2} y^{4}\right)^{3}$ doesn't pequal $2 x^{6} y^{12}$ term als $\left(2 x^{2} y^{4}\right)^{3}$ doesn't equal $2 x^{6} y^{1}$ Instead, $\left(2 x^{2} y^{4}\right)^{3}=8 x^{6} y^{12}$
Mistake 4: We raise the first number to the power, we don't multiply it
$(5 x)^{3}$ does not equal $15 x^{3}$
Instead, $(5 x)^{3}=5^{3} x^{3}=125 x^{3}$

VERY COMMON Mistakes

 Don't mistak$(2 x)^{2}$ is not the same as $(2+x)^{2}$
$(2 x)^{2}$ is not the same as $(2+x)^{2}$
$(2 x)^{2}=4 x^{2}$ whereas $(2+x)^{2}=4+4 x+x^{2}$ $(2 x)^{2}=4 x^{2}$ whereas $(2+x)^{2}$
The latter is expanding brackets
Mistake 6: Don't confuse addition/subtraction with multiplication We can only add/subtract "like" terms (when w

- $2 x+3 x$ is not the same as $2 x \times 3 x$ $2 x+3 x=5 x$ by collecting like term $2 x \times 3 x=6 x^{2}$ using indices rule - $2 x^{2}+3 x^{2}$ is not the same as $2 x^{2} \times 3 x^{2}$ - $2 x^{2}+3 x^{3}$ cannot be done/simplified but $2 x^{2} \times 3 x^{3}=6 x^{5}$

Division
Rule 1: Subtract the powers when dividin

$$
x^{a} \div x^{b} \text { or } \frac{x^{a}}{x^{b}}=x^{a-b}
$$

The bases must be the same to use this rule and notice how they do not change (base x stays x)
Why is this rule true?

$$
\begin{aligned}
\frac{x^{7}}{x^{4}} & =\frac{x \times x \times x \times x \times x \times x \times x}{x \times x \times x \times x} \\
& =\frac{x \times x \times x \times x \times x \times x \times x}{x \times x \times x \times x}
\end{aligned}
$$

Hence, we subtract the powers
Simplify $16 x^{2} y^{5} \div 4 x^{6} y^{3}$
Simplify $16 x^{2} y^{5} \div 4 x^{6} y^{3}$
$16 x^{2} y^{5} \div 4 x^{6} y^{3}=(16 \div 4) x^{2-6} y^{5-3}=4 x^{-4} y^{2}$

Common Mistakes

Mistake 1: The base DOES NOT change $9 \div 2^{6}$ doesn't equal 1^{3} Instead, $2^{9} \div 2^{6}=2^{3}$
Mistake 2: Don't ignore the power when it isn't written (it means power 1) $6 x^{2} \div 3 x$ doesn't equal $2 x^{2}$ Instead, $6 x^{2} \div 3 x^{1}=2 x$
Mistake 3: Don't let the fraction division notation

$$
\frac{24 x^{6} y^{2}}{202 x^{4}}
$$

Deal with each part separately

$$
\begin{aligned}
& \frac{2 x^{6} y^{2}}{32 x^{4} y^{3}} \\
& =\frac{3 x^{2}}{4 y}
\end{aligned}
$$

Think of it as simplifying $\frac{24}{2}$ which is ${ }^{3}$ and there are 6 x 's and $2 y^{\prime}$ s in the numerator and $4 x^{\prime}$ s and 3 a
the denominator
$\frac{3 x x x x x x y y}{4 x x x x y y y y}$
We cross off the corresponding matching pairs
$\frac{3 x x x x x x y)}{4 x x x x y y}$
We have $2 x^{\prime}$ s left in the numerator and $1 y$ left in the denominator

$$
=\frac{3 x^{2}}{4 y}
$$

OR:
Just think when we move the powers between numerator and denominators we subtract them $\frac{24 x^{6} y^{2}}{32 x^{4} y^{3}}=\frac{24 x^{6-4}}{32 y^{3-2}}=\frac{3 x^{2}}{4 y}$

Raising Numbers to Powers
Rule 1: Raising to a power of zero
Anything to the power of 0 is always

$$
\begin{array}{r}
\text { (ANYTHING non zerc } \\
\begin{aligned}
2^{0} & =1 \\
x^{0} & =1 \\
(2 x)^{0} & =1 \\
\left(\frac{2}{3}\right)^{0} & =1
\end{aligned} \\
\text { Rule 2: Raising a fraction to a power: } \\
\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}
\end{array}
$$

Apply the power to both the numerator and denominato

$$
\begin{aligned}
& \text { Simplify }\left(\frac{2}{3}\right)^{3} \\
& \left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}
\end{aligned}
$$

Note: If more than 1 "element" inside the bracket we then use multiplication rule 3

Simplify \begin{tabular}{rl}
$\left(\frac{2 x}{3 y^{2}}\right)^{3}$

$\left(\frac{2 x}{3 y^{2}}\right)^{3}$	$=\frac{(2 x)^{3}}{\left(3 y^{2}\right)^{3}}=\frac{(2)^{3}(x)^{3}}{(3)^{3}\left(y^{2}\right)^{3}}$
	$=\frac{2^{3} x^{3}}{3^{3} y^{6}}=\frac{8 x^{3}}{27 y^{6}}$

\end{tabular} .

Rule 3: Raising negative numbers to a power (positive number) ${ }^{\text {even power }}=+$ (posiitve number) odd
(negative number) ${ }^{\text {even power }}=$
(negative number) ${ }^{\text {odd power }}=-$

Example 1:

Simplify (-2$)^{4}$ versus -(2)
$(-2)^{4}=-2 \times-2 \times-2 \times-2=16$
$-2=-(2 \times 2 \times 2 \times 2)=-16$
$(-2)^{4}=16$ nd $(2)^{4}=-16$

Example 2:
Simplify (-2$)^{3}$ versus $-(2)$

$$
\begin{aligned}
(-2)^{3} & =-2 \times-2 \times-2=-8 \\
-2^{3} & =-(2 \times 2 \times 2)=-8
\end{aligned}
$$

Here they are the same thing!
$(-2)^{3}=-8$ and $-(2)^{3}=-8$

Simplify 2(3) ${ }^{2}$

$2(3)^{2}$ does not equal 6^{2}
We must do the power 3^{2} first BIDMAS/BODMAS)
$2(3)^{2}=2(9)=18$

Rule 1: $x^{-n}=\frac{1}{x^{n}}$ and $(a b)^{-n}=\frac{1}{(a b)^{n}}$
The easiest way to think of this rule is that if we move terms between the numerator and denominator, the POWER of what is being moved changes(swa
vice versa).
(Fractional Powers)

$a^{\frac{n}{m}}=(\sqrt[m]{a})^{n}$

"ROOT AND THEN POWER

Simplify 2^{-3}

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

Moving the power -3 from the numerator to the denominator reverses the sign (in other words - became +).
Note: 2^{-3} means $\frac{2^{-3}}{1}$ hence the power was in the numerator originally and negative. We then moved it to the denominator and it became positive. There is 1 in the numerator since the
2^{-3} moved, leaving only a 1

$$
\begin{aligned}
& \text { Get rid of the negative powers in } \frac{2 x^{2} y^{-3}}{3 z^{-4}} \\
& \qquad \frac{2 x^{2} y^{-3}}{3 z^{-4}} \\
& \text { The constants } 2 \text { and } 3 \text { stay where they an }
\end{aligned}
$$

The constants 2 and 3 stay where they are since they are and so can
the x^{2} term since it doesn't have a negative power. Remember for terms with negative powers that anything that moves between numerator and denominator changes the sign of its power

$$
\frac{2 x^{2} z^{4}}{3 y^{3}}
$$

Rule 2: Raising fractions to negative powers

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}=\frac{y^{n}}{x^{n}} .
$$

We flip the fraction and change the sign
Why is this rule true?
Way 1: Flip the fraction and the power becomes positive $\left(\frac{y}{x}\right)^{n}$ Now raise both to the power n giving $\frac{y^{n}}{x^{n}}$
Way 2: Apply the power to both the numerator and denominator

$$
\text { first to get } \frac{x^{-n}}{y^{-n}} \text {. Now deal with the negative powers } \Rightarrow \frac{y^{n}}{x^{n}}
$$

Way 3: Get rid of the negative power first by writing over

$$
\frac{1}{\left(\frac{x}{y}\right)^{n}}=\left(\frac{y}{x}\right)^{n} \quad \text { or } \quad\left(\frac{1}{\frac{x}{y}}\right)^{n}=\left(\frac{y}{x}\right)^{n}
$$

Now raise both to the power n giving $\frac{y^{n}}{x^{n}}$

$$
\text { urce how writing a fraction over } 1 \text { just flips it (i.e. way }
$$

$$
\text { Simplify }\left(\frac{64}{125}\right)^{-\frac{2}{3}}
$$

$$
\left(\frac{64}{125}\right)^{-\frac{2}{3}} \text {. Flip the fraction }\left(\frac{125}{64}\right)^{\frac{2}{3}}
$$

$$
\left(\frac{125}{64}\right)^{\frac{2}{3}}=\frac{125^{\frac{2}{3}}}{64^{\frac{2}{3}}}=\frac{25}{16}
$$

Note: $x^{\frac{1}{m}}=\sqrt[m]{x}$

A fractional power works like a flower The bottom is the roo And the top is the po start: $8^{\frac{2}{3}}$

Simplify $27^{\frac{2}{3}}$ $27^{\frac{2}{3}}$ Root
$(\sqrt[3]{27})^{2}$
$(3)^{2}$
Power
$=3^{2}$
$=9$
$=9$

Simplify $\left(\frac{64 x^{6} z^{12}}{27 y^{3}}\right)^{\frac{3}{3}}$

$\left(\frac{64 x^{6} z^{12}}{27 y^{3}}\right)^{\frac{1}{3}}==\frac{\left(64 x^{6} z^{12}\right)^{\frac{1}{3}}}{\left(27 y^{3}\right)^{\frac{1}{3}}}$

$$
\begin{aligned}
& =\frac{64^{\frac{1}{3}}\left(x^{6}\right)^{\frac{1}{3}}\left(z^{12}\right)^{\frac{1}{3}}}{27^{\frac{1}{3}}\left(y^{3}\right)^{\frac{1}{3}}} \\
& =\frac{64^{\frac{1}{3}} x^{2} z^{4}}{27^{\frac{1}{3}} y}=\frac{4 x^{2} z^{4}}{3 y}
\end{aligned}
$$

Common Mistakes
$\sqrt{x}=x^{\frac{1}{2}}$
We drop the 2 for square root. When nothing is written to the left of the root it means square root

